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Abstract: Living systems maintain structural and functional stability while adapting to environmental changes, a
capability independent of specific system‑environment states. Existing frameworks, such as self‑organization the‑
ory and free energy principles, cannot measure system‑environment interaction at the causal level. In this article,
we propose a new causal indicator, Flexibility, to measure a system’s ability to respond to its environment. We
construct this indicator based on information theory and interventional operations from causal inference, which
implies the indicator depends only on the dynamical causal mechanism. We show this indicator satisfies the axiom
system of the partial information decomposition (PID) framework and decomposes into two components, Expan‑
siveness and Introversion, which correspond to different strategic tendencies for environmental adaptation. This
decomposition reveals that Flexibility depends on the entanglement between system‑environment variables and
noise magnitude. Through experiments on cellular automata (CA), random Boolean networks, and real gene reg‑
ulatory networks (GRNs), we validate that the indicator identifies the most complex and computationally capable
CA (Langton’s parameter at 0.5), while demonstrating that feedback loops carrying important biological functions
in GRNs exhibit the highest flexibility. We also find that flexibility peaks at a moderate level of dynamical noise.
Furthermore, we combine this framework with machine learning techniques to demonstrate its applicability when
the underlying dynamics are unknown.
Keywords: Synergy; Flexibility; Effective Information; Partial Information Decomposition; Gene Regulatory Net‑
works

1. Introduction
Many complex systems exhibit life‑like characteristics. Examples range from flexible robots that adapt to hu‑

man interactions to self‑organizing online communities that produce innovative crowdsourced outcomes. So what
are the primary distinctions between them and ordinary systems? The self‑organization theory first addresses this
question [1]. People believe a life‑like systemmust have the ability of self‑organization [2,3]. However, life is more
than just an open system with self‑organization [4]. More importantly, they can maintain the stability of their own
structure and function when faced with diverse and changing environments. For example, a snowflake is a self‑
organizing system [3], but it is not a living system. Once the environmental temperature rises, the snowflake melts.
If this snowflake could autonomously avoid high‑temperature environments and phase transitions that would dam‑
age its own structure, it would be an adaptive systemwith life activity [4]. Many papers have proposed this kind of
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adaptive system in various fields [5–7].
Besides qualitative discussions, we need a formal framework to quantify and identify this unique property of

life. Information theory is an important instrument for quantifying living systems [8,9]. Manymetrics canmeasure a
system’s self‑organization [10,11]. However, to date, few indicators exist that measure the extent towhich a system
can copewith environmental changes. Theproposal of the information theory of individuality [12] is tomeasure the
individuality of living systems from the perspective of information dynamics. It describes the individual survival of
a system as maximizing the transmission of its own information over time, so mutual information and conditional
mutual information are used to define the individuality of an organism.

In the information theory of individuality, the calculation of the metric (mutual information) depends on the
state distribution of the observed data, which is contingent upon the system’s initial conditions, the environment,
and the dynamical process duration (if the system is non‑steady‑state). Conversely, the characteristic of life’s flexible
response to the environment is not a property that varies with time and state, but rather reflects the characteristics
of the interaction mechanisms between the system and the environment, representing a dynamical property [13].
Therefore, we should focus on the quantities defined on their causal mechanisms, rather than the states [14].

Tononi and Hoel et al. have proposed information indicators measured at the causal level, such as effective in‑
formation (EI) [14,15]. The causal mechanism remains invariant with respect to state and time. Here, dynamics are
described byMarkovian transition probabilitymatrices (TPM) [14,16], and EI is designed as a function of TPM [17,18].
EI is used to measure the strength of causal effects in dynamics [14,18], and the difference in EI between macro and
micro dynamics can quantify the emergence in complex systems [14,16]. When dynamical mechanisms are unknown,
machine learning techniques can identify causal mechanisms from the data [19]. Since EI does not account for the
interactions between the system and the environment [20], we extend EI to develop a causal metric that incorporates
environmental influences. Consequently, we can leverage this kind of indicator, along with other relevant metrics [21],
to describe causal properties and craft an indicator capable of measuring the system’s responsiveness to the environ‑
ment at the causal level.

Moreover, through partial information decomposition (PID) [22], we see that individuality involves redundant
information and synergistic information. The information theory of individuality uses the PID theory to explain the
physical meaning of individuality indicators, but fails to calculate information atoms that describe the system’s flexi‑
ble response to the environment [12]. Researchers have proposed numerousmethods to calculate information atoms,
but their computational results conflict with the consensus regarding specific properties [23]. In this paper, we intro‑
duce EI, which requires the input variables from the previous moment to be uniformly distributed [14,15], and start‑
ing from the existing PID axiomatic system [24], we derive a computable definition of information atoms in a three‑
variable system. We extend effective information (EI) within the PID framework to decompose system‑environment
interactions into three components: synergistic (flexibility), individual, and external driving information. This ap‑
proach isolates the synergistic information produced by their entangled dynamics.

In this article, we define an indicator at the causal level to characterize the ability of a system to maintain
its own structure and function when dealing with environmental changes. Through mathematical proofs, we show
that this indicator is precisely the synergistic information of the system itself when the system and the environment
are coupled together. In our numerical experiments, we demonstrate the correlation between this indicator and the
type of cellular automata. Additionally, we apply this indicator to gene regulatory networks (GRNs) [25], uncovering
the significance of feedback loops (FBLs) and the responses of the steady states of a highly synergistic system to
environmental alterations. Notably, FBLs are instrumental in carrying out the biological functions of biological
systems in reacting to environmental changes [26]. Additionally, we conducted a machine learning experiment to
demonstrate that causal mechanisms can be identified using machine learning when data alone is available. Our
experiments reveal that flexibility peaks for complex types of cellular automata,and at theirmaximal computational
capability, identify feedback loops as biological flexibility hubs.

2. Formulation
Next, we provide the formal expressions for the system and the environment. Three variable combinations

affect the system’s state at the next time step: the system, the environment, and their combined variables. Based
on this, we define three causal mechanisms: the Individual Mechanism, the External Driving Mechanism, and the
Distinct Mechanism.
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2.1. Distinct Mechanism
We define System 𝑋 as a subset of the World 𝑈, with respective state sets Ω𝑋 and Ω𝑈 . Assuming the dynamics

of 𝑈 are discrete and Markovian, the conditional probability 𝑃(𝑈𝑡+1|𝑈𝑡) characterizes them, where t represents
time in the stochastic process. To exclusively measure the dynamical properties, we eliminate the influence of the
World data distribution by introducing the do‑operator [21], denoted as 𝑑𝑜(𝑈𝑡 ∼ 𝒰(Ω𝑈)), where𝒰 represents the
uniform distribution.

For the stochastic process at time t + 1, our analysis focuses exclusively on the temporal evolution of the target
system 𝑋𝑡+1. This necessitates marginalizing over extraneous variables in the global system 𝑈, thereby restricting
attention to the marginalized conditional probability: 𝑃(𝑋𝑡+1|𝑈𝑡). Formally, this probability measure is obtained
through state space projection: ∀𝑥𝑡+1 ∈ Ω𝑋 , 𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑈𝑡 ) = ∑ 𝑢𝑡+1 ∈ Ω𝑈 ,

𝜋𝑋 ൫𝑢𝑡+1൯ = 𝑥𝑡+1
𝑃(𝑈𝑡+1 = 𝑢𝑡+1|𝑈𝑡 ).

Here, 𝜋𝑋∶ Ω𝑈 → Ω𝑋 represents the canonical projection mapping that extracts the component from the global
state. For example, consider a universe 𝑈 with two systems, A and B, each having two states, 0 and 1. The entire
universe𝑈 thus has four possible states: 00, 01, 10, and 11. To compute the transition probability for system A alone,
we sum the conditional probabilities of U transitioning to 00 and 01 to obtain the probability of A transitioning to 0.
Similarly, we sum the probabilities of 𝑈 transitioning to 10 and 11 to obtain the probability of A transitioning to 1.

Following the terminology proposed byAlbantakis et al. [27], we collectively term the systemand environment
as a Distinction. We are solely concerned with the impact of the system and environment on the system’s state at
the next moment; thus, we define the Distinct TPM as the following:

𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1 ∶ 𝑃 ൫𝑋𝑡+1ห𝑋𝑡 , 𝐸𝑡൯ (1)
The state spaces of the joint variable𝑋, 𝐸, and of𝑋 are denoted asΩ (𝑋, 𝐸) andΩ𝑋 , respectively. Consequently,

the shape of this TPM is |Ω(𝑋, 𝐸)| × |Ω𝑋 |. In Figure 1b, we focus on the causal arrows from 𝑋𝑡 and 𝐸𝑡 pointing
to 𝑋𝑡+1, which corresponds to the dynamics described by the system’s distinct TPM.

Figure 1. The causal diagram of the system’s interactionwith the environment. (a)When a set of variables is desig‑
nated as the system, the spatial distinction between the system, environment, and background conditions is made,
with arrows representing the causal relationships between variables. (b) The causal diagram of the interaction be‑
tween 𝑋 and 𝐸 over time. Changes in the filling of circles in the diagram represent state transitions. In the diagram,
the green triangle and the formula represent the EI from both the system and the environment to the system itself,
the blue lines and the formulas represent the two types of unique information, and the red lines and the formula
represent the effective synergistic information between the system and its environment, also known as flexibility.
This diagram is consistent with the causal diagram described by Krakauer et al. [12].
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2.2. Individual and External Driving Mechanisms
Starting with the distinct TPM 𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1 , we can derive the TPM 𝑃𝑋𝑡→𝑋𝑡+1 , which considers only the system’s

internal dynamics and excludes environmental information, termed the Individual Mechanism. Meanwhile, we ex‑
tract the TPM𝑃𝐸𝑡→𝑋𝑡+1 , which focuses exclusively on the environment’s impact on the system’s information, termed
the External Driving Mechanism. The definitions of these mechanisms are as follows, and their corresponding rela‑
tionships with the causal diagrams are also marked in Figure 1a.

𝑃𝑋𝑡→𝑋𝑡+1 = |Ω𝐸|
−1 ෍

𝐸𝑡=𝑒𝑡
𝑃 ൫𝑋𝑡+1ห𝑋𝑡 , 𝐸𝑡൯ (2)

𝑃𝐸𝑡→𝑋𝑡+1 = |Ω𝑋|
−1 ෍

𝑋𝑡=𝑥𝑡
𝑃 ൫𝑋𝑡+1ห𝑋𝑡 , 𝐸𝑡൯ (3)

When we observe the probability distribution of environmental states, the conditional probability of the system
can be obtained through 𝑃 ൫𝑋𝑡+1ห𝑋𝑡൯ = ∑𝐸𝑡=𝑒𝑡 𝑃(𝐸𝑡)𝑃 ൫𝑋𝑡+1ห𝑋𝑡 , 𝐸𝑡൯. Because we introduce the do‑operator [21],
which intervenes in both the environment and the system to achieve a uniform distribution, denoted as 𝑑𝑜(𝑋𝑡 , 𝐸𝑡 ∼
𝒰(Ω𝑋,𝐸)) in Figure 1b, we have 𝑃(𝐸𝑡 ) = |Ω𝐸 |−1. Consequently, we derive the expressions for 𝑃𝑋𝑡→𝑋𝑡+1 and,
similarly, for 𝑃𝐸𝑡→𝑋𝑡+1 as Equations (2) and (3) describe.

2.3. Definition of Flexibility
After obtaining those TPMs, we introduce the EI function for an arbitrary causal mechanism (TPM). EI repre‑

sents the effective information, which quantifies the strength of causal effects for a TPM [14,17]. EI is defined as the
mutual information for an intervened uniformly distributed input variable X and its corresponding output variable
Y as shown in the following formula.

𝐸𝐼 (𝑃𝑋→𝑌) ≡ 𝐼 (𝑋, 𝑌ห𝑑𝑜 (𝑋 ∼ 𝒰(Ω𝑋)))

= 1
𝑁

𝑁

෍
𝑖=1

𝑁

෍
𝑗=1

𝑝𝑖𝑗log
𝑁 𝑝𝑖𝑗

∑𝑁𝑘=1 𝑝𝑘𝑗

(4)

𝑝𝑖𝑗 is an element of the TPM 𝑃𝑋→𝑌 , and N is the number of states of the input variable. For further details, see
Supplementary Materials Appendix B. We can define EIs for the mechanisms 𝑃𝑋𝑡→𝑋𝑡+1 and 𝑃𝐸𝑡→𝑋𝑡+1 , which are
also coined as Individual Driving Information and External Driving Information:

𝐸𝐼 (𝑃𝑋𝑡→𝑋𝑡+1) = 𝐼 ൫𝑋𝑡 , 𝑋𝑡+1ห𝑑𝑜 ൫𝑋𝑡 , 𝐸𝑡 ∼ 𝒰(Ω𝑋,𝐸)൯൯ (5)

𝐸𝐼 (𝑃𝐸𝑡→𝑋𝑡+1) = 𝐼 ൫𝐸𝑡 , 𝑋𝑡+1ห𝑑𝑜 ൫𝑋𝑡 , 𝐸𝑡 ∼ 𝒰(Ω𝑋,𝐸)൯൯ (6)
These equations show the information about the system’s next moment, provided solely by the system, and

that provided solely by the environment. Naturally, due to the properties of mutual information, both types of
effective information are non‑negative. Within the effective joint mutual information, after the subtraction of these
two components, what remains is the information that is exclusively provided by the systemand the environment in
union, termed as flexibility, or the effective synergy between systemand environment, denoted by 𝑆𝑦𝑛(𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1).

𝑆𝑦𝑛 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ = 𝐸𝐼 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ − 𝐸𝐼 (𝑃𝑋𝑡→𝑋𝑡+1) − 𝐸𝐼 (𝑃𝐸𝑡→𝑋𝑡+1) (7)
The correspondence between these indicators and the causal diagram is presented in Figure 1b. We also

define flexibility for continuous dynamical systems. Please refer to Supplementary Materials Appendix F.
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2.4. Properties of Flexibility
Actually, 𝑆𝑦𝑛(𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1) aligns with the definitions and axiomatic system of PID theory [28] regarding the

requirements for synergistic information in trivariable systems.
In the following paragraphs, we denote Zǂ as the intervened version of any random variable 𝑍 after the inter‑

vention 𝑑𝑜(𝑋𝑡 , 𝐸𝑡 ∼ 𝒰(Ω𝑋,𝐸)). Consequently, we have the following theorem:
Theorem 1. In a trivariable system, the flexibility defined in Equation (7) is the synergistic information of Xǂ t, Ẽt

with respect to Xǂ t+1.
This theorempertains to a specific PID axiomatic system (please refer to SupplementaryMaterialsAppendix

A). For the proof of this theorem, please refer to Supplementary Materials Appendix C. The upper bound of syn‑
ergy is min{I(Xǂ t;Xǂ t+1|Ẽt), I(Ẽt;Xǂ t+1|Xǂ t)}. The proof of this property is provided in Supplementary Materials Ap‑
pendix C. We can further decompose the synergy term, i.e., Equation 7.

Corollary 1. The flexibility defined in Equation (7) can be decomposed into two components: Expansiveness
and Introversion.

We define Expansiveness, abbreviated as Exp, and Introversion, abbreviated as Int, as follows:

𝐸𝑥𝑝 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ =
1

|Ω𝐸|
෍
𝑒∈Ω𝐸

𝐻ቌ 1
|Ω𝑋|

෍
𝑥∈Ω𝑋

𝑃𝑥,𝑒ቍ +
1

|Ω𝑋|
෍
𝑥∈Ω𝑋

𝐻ቌ 1
|Ω𝐸|

෍
𝑒∈Ω𝐸

𝑃𝑥,𝑒ቍ (8)

𝐼𝑛𝑡 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ = 2 log2 |Ω𝑋| −
1

หΩ𝑋,𝐸ห
෍
𝑒∈Ω𝐸

෍
𝑥∈Ω𝑋

𝐻 ൫𝑃𝑥,𝑒൯ − 𝐻ቌ 1
หΩ𝑋,𝐸ห

෍
𝑒∈Ω𝐸

෍
𝑥∈Ω𝑋

𝑃𝑥,𝑒ቍ (9)

Here, 𝑃𝑥,𝑒 denotes the conditional probability distribution corresponding to system state x and environment
state e in a distinct TPM. The proof of Corollary 1 can be found in Supplementary Materials Appendix C.

To elucidate the meanings of expansiveness and introversion, we first introduce the EI function and its decom‑
position [16].

𝐸𝐼(𝑃𝑋→𝑌) = − ቌ 1𝑁

𝑁

෍
𝑖=1

𝐻(𝑃𝑖)ቍ
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

determinism

+𝐻ቌ 1𝑁

𝑁

෍
𝑖=1

𝑃𝑖ቍ
ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
non‑degeneracy

(10)

Here, 𝑋 denotes an arbitrary input variable with a state space of size N, Y represents the corresponding output
variable, 𝑃𝑖 corresponds to the i‑th row of the TPM𝑃𝑋→𝑌 , and𝐻(𝑃) indicates the Shannon entropy of the probability
distribution 𝑃. The term −ቀ 1𝑁 ∑

𝑁
𝑖=1𝐻 (𝑃𝑖)ቁ represents determinism; when it is high, it indicates that the system

has low noise. The term 𝐻 ቀ 1𝑁 ∑
𝑁
𝑖=1 𝑃𝑖ቁ represents non‑degeneracy; when it is low (degeneracy is high), it implies

that the system will deterministically converge to certain states, indicative of attractor dynamics.
When the system employs different TPMs corresponding to individual environmental states, the environmen‑

tal context becomes explicitly incorporated. In contrast, when environmental states remain unspecified, the sys‑
tem adopts an environment‑averaged TPM. Through the EI decomposition framework, Equation (8) measures the
system’s state‑specific differentiation under well‑defined environments versus its stochastic variability under en‑
vironmental uncertainty. These dual aspects together constitute Expansiveness as the system’s outward adaptive
orientation. Correspondingly, Equation (9) captures the system’s structured coordination in explicit environments
versus its reduced differentiation in ambiguous contexts, jointly characterizing Introversion as the internal consol‑
idation tendency. This demonstrates two distinct pathways through which the system enhances flexibility: expan‑
siveness and introversion. The relationship between the magnitudes of Exp and Int under different conditions can
be referred to in Figure 2. Given that the Shannon entropy of the system’s probability distribution ranges from 0
to log2|Ω𝑋 |, we can determine the numerical ranges for Exp and Int: 0 ≤ 𝐸𝑥𝑝 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ , 𝐼𝑛𝑡 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ ≤
2log2 |Ω𝑋 |.
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Figure 2. Schematic diagrams of expansiveness and introversion. Different colors of the circles represent different
system states, while different colors of the dashed lines indicate different environmental states at that time. Arrows
with associated numerical values denote transition probabilities from system‑environment states at time t to sys‑
tem states at time t + 1. (a) shows the case of low expansiveness and high introversion, while (b) shows the case of
high expansiveness and low introversion.

2.5. Summary of Terms
To clarify the meaning and physical significance of each term, we provide a summary in Table 1. As the ta‑

ble shows, Flexibility decomposes into Expansiveness and Introversion, corresponding to species with different
strategic orientations. For instance, Daphnia reproduces asexually in favorable environments but switches to sex‑
ual reproduction in unfavorable ones, even if this introduces deleterious mutations (noise) [29]. It is therefore a
system with high Expansiveness. In contrast, the hedgehog opts for low‑risk physical protection, representing a
system with high Introversion. Individual Driving Information and External Driving Information, however, fail to
reflect the unique properties of living systems.

According to PID theory, Individual Driving Information and External Driving Information are unique informa‑
tion after an intervention: each relates to one source variable and not the other. Therefore, they cannot reflect the
interaction between the two source variables (the system and the environment at the same time). Flexibility, how‑
ever, corresponds to synergistic information post‑intervention, which is transmitted only when considering both
source variables. It can thus capture the system‑environment interaction. SupplementaryMaterials Appendix A
provides more details on PID theory.

Table 1. Summary of Terms.

Terms Dynamics Description Physical Interpretation or Examples

Flexibility TPMs differ across environments and exhibit low noise. Adapts to environments with diverse persistence
strategies.

Expansiveness TPMs differ across environments. Daphnia switch reproductive modes across different
environments.

Introversion TPMs exhibit low noise. Hedgehogs’ spiny shells offer physical protection against
most threats.

Individual Driving Information The system’s state depends only on its state at the
previous time step.

Most inorganic substances maintain stable structures
and states.

External Driving Information The system’s state depends only on the environment’s
state at the previous time step.

Most proteins lose activity in high‑temperature
environments.
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3. Results
In the subsequent experiments, we will validate the meaning and functionality of these metrics.

3.1. Cellular Automaton
Cellular automata (CA), particularly one‑dimensional elementary CA, are used to simulate artificial life, with

Wolfram identifying 256 possible rule sets [30]. Wolfram classified CA into four behavior types: stable, periodic,
chaotic, and complex, with Class IV potentially being computationally universal. However, this classification is sub‑
jective, leading Langton to introduce the parameter 𝜆 = 1 − 𝑛

8 [2] to quantify CA behaviors, where n is the number
of outputs being 1 in the CA rule table. He demonstrated that CA behaviors can continuously transition from Class
I to Class III as λ varies from 0 to 1, with values between 0.3 and 0.6 corresponding to complex Class IV dynamics.
For λ around 0.5, CAs exhibit complex behavior and perform best on computational tasks [31,32].

As depicted in Figure 3, we have validated the relationship between flexibility and its decomposition with the
behavior types of CA. In Figure 3a, as CA becomes increasingly complex, expansiveness rises while introversion
declines, overall reflecting an increase in flexibility. A similar phenomenon is observed in Figure 3b. When λ is
between 0.3 and 0.6, the increase in expansiveness exceeds the decrease in introversion, leading to an increase in
flexibility. The followingmathematical relationship indicates that, in noise‑free CA, introversion is indeed a definite
function of λ .

Figure 3. (a) The trend of expansiveness, introversion, and flexibility between the system and the environment as
the type of CA changes from Class I to Class IV. The line represents the mean, and the band represents the standard
deviation. (b) A comparative trend chart of them, along with the mutual information proposed by Langton [2], as
λ varies. (c) A comparative chart of the standard deviation for the four indicators is calculated. (d) A scatter plot
of flexibility and mutual information for all 256 CA. The flexibility of a specific rule‑based cellular automaton is
calculated without a standard deviation, whereas mutual information includes a standard deviation, depicted by
error bars.

𝐼𝑛𝑡 ൫𝑃𝑋𝑡 ,𝐸𝑡→𝑋𝑡+1൯ = 2 log2 |Ω𝑋| −
1

หΩ𝑋,𝐸ห
෍
𝑒∈Ω𝐸

෍
𝑥∈Ω𝑋

𝐻 ൫𝑃𝑥,𝑒൯ − 𝐻ቌ 1
หΩ𝑋,𝐸ห

෍
𝑒∈Ω𝐸

෍
𝑥∈Ω𝑋

𝑃𝑥,𝑒ቍ

= 2 log2 |Ω𝑋| − 𝐻ቌ 1
หΩ𝑋,𝐸ห

෍
𝑒∈Ω𝐸

෍
𝑥∈Ω𝑋

𝑃𝑥,𝑒ቍ

= 2 log2 |Ω𝑋| − 𝐻(𝜆, 1 − 𝜆)

(11)
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This explains why, in Figure 3c, the standard deviation of introversion is zero, while the fluctuations in ef‑
fective synergy are attributed to expansiveness. Concurrently, it is evident that mutual information, as a measure
based on observational data, exhibits a larger standard deviation, even though its trend aligns with that of ef‑
fective synergy. In Figure 3d, we run iterations for 200 steps under each initial condition in a space of 10‑cell
automata. Based on these observational data, we calculate the mutual information from time t to t+1 for a single
cell and compute the expectation and standard deviation over all possible initial conditions. The varying standard
deviations across different rules of CA indicate that the selection of initial conditions is crucial for the computa‑
tion ofmutual information for some rules. In contrast, the calculation of effective synergy is independent of initial
conditions.

3.2. Identify Flexible Motifs in Gene Regulatory Networks

Wewill measure the flexibility of gene regulatory networks (GRNs) using real data.
GRNs describe how a collection of genes governs key processes within a cell, which are often modeled as

Boolean networks. Kadelka et al. [33] established the most comprehensive repository of expert‑curated Boolean
GRN models to date, encompassing both structural configurations and Boolean functions. These models describe
the regulatory logic underlying a variety of processes in numerous species across multiple kingdoms of life. Due
to computational constraints, our analysis was limited to a subset of these networks. We selected 63 models, with
node counts ranging from 5 to 67, encompassing animal, plant, fungal, and bacterial domains.

To investigate which GRN structures exhibit enhanced environmental responsiveness in real‑world settings,
we assessed the flexibility of various three‑node subgraph configurations in Figure 4a. The analysis revealed that
feedback loops (FBLs) demonstrated the highest flexibility values. In fact, FBLs in GRNs carry important biological
functions. For example, FBL structures often exhibit dynamical compensation (DC), which is the ability of a model
to compensate for variation in a parameter [26]. Additionally, many oscillators in biological systems originate from
negative FBLs, known as repressilators [26]. They play a crucial role in adapting to environmental changes and
regulating their own cycles. In Figure 4b, the mean flexibility of FBLs is also high, confirming the above conclu‑
sions. Moreover, the structure with the highest value among four‑node structures is not a simple FBL but a more
connected structure that includes FBLs (see the highlighted part in the figure). This structure has not yet been fully
studied and named by biologists. Perhaps it carries some interesting functions related to biological adaptation to
the environment that have yet to be discovered. We further compare the flexibility of FBLs and FFLs with different
Boolean functions; see Supplementary Materials Appendix D for the analysis.

To verify that systems with higher flexibility have a stronger ability to respond to environmental changes, we
compared the evolution of gene activation states under environmental shocks in Figure 4c,d. The genes in Figure
4c are from the GRN of macrophage activation, with a flexibility of 0.566, while those in Figure 4d are from the
GRN of tumour cell invasion and migration, with a flexibility of 0. Comparing the time series curves, the former
exhibits a greater diversity of steady states under different environmental conditions. Wemeasuredmore precisely
the mean mutual information between consecutive moments when environmental state changes lead to shifts in
system steady states, finding a positive correlation coefficient of 0.487 with flexibility. For further experimental
details, see Supplementary Materials Appendix D.

3.3. Random Boolean Network and Machine Learning

To explore dynamical characteristics influencing flexibility beyond network topology, subsequent experiments
investigate the effects of dynamical parameters on random Boolean networks (RBNs) with fixed structures. Fur‑
thermore, while previous experiments were conducted under known dynamical mechanisms, practical scenarios
frequently involve data‑driven problemswith unknown underlyingmechanisms. We therefore employ RBN simula‑
tions integrated with machine learning methodologies. By first reconstructing governing mechanisms from obser‑
vational data and subsequently performing flexibilitymeasurements, we validate the applicability of our framework
to systems with hidden dynamical rules.
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Figure 4. (a) The mean and standard deviation of flexibility for all possible three‑node subgraph structures in
various real environments, where the value for FBL is the highest. (b) The mean flexibility for some four‑node
subgraph structures, with the two highlighted structures having the highest values. (c) The time series of state
changes for the system composed of the genes BAG4, BAG4 TNFRSF1A, and TNF BAG4 TNFRSF1A in the GRN of
macrophage activation, starting from the initial state “111” and switching environmental states every 10 steps,
with a total of 8 randomly selected environmental states. (d) The time series generated by the system composed
of the genes CDH1, CDH2, and GF in the GRN of tumour cell invasion andmigration, under experimental conditions
consistent with those in (c).

In Figure 5, each variable can take on two values, 0 or 1. For any variable 𝑋𝑖 in the system, its update rule is
defined as follows:

𝑃 ൫𝑋𝑡+1𝑖 = 1ห𝑢𝑡൯ = 1
1 + exp ቀ−𝑘 ∑𝑛𝑗=1𝑤𝑗,𝑖𝑢𝑡𝑗 ቁ

(12)

Each variable 𝑈𝑗 ’s edge acting on another variable 𝑋𝑖 respectively, corresponds to a weight value 𝑤𝑗,𝑖 ∈ [0, 1].
𝑘 ∈ [0, +∞] is a parameter controlling thenoisemagnitude. When𝑘 = 0, the noise is the greatest; that is, regardless
of the values of the input variables, the conditional probability is a uniform distribution. The larger 𝑘 is, the smaller
the noise intensity is. We set the temperature 𝑇 = 1

𝑘 , for 𝑘 ≠ 0. In this experiment, a total of two variables were
set. One is the temperature 𝑇, and the other is the proportion of the system’s own variables and the environmental
variables’ effect on the system. We set the weight of the system’s own effect as𝑤 ∈ [0, 1] (the solid line in Figure 5,
including self‑loops), and theweights of the effects of the environmental variables on the system (thedashed arrows
in Figure 5) are 𝑤𝐸1 ,𝑖 = 0.5(1 − 𝑤) and 𝑤𝐸2 ,𝑖 = 1.5(1 − 𝑤). It can be seen that the larger 𝑤 is, the stronger the
influence of the system on itself is, and the weaker the influence of the environment on the system is. The heatmap
of the flexibility varying with 𝑇 and𝑤 is shown in Figure 6a.

As illustrated in Figure 6a, the system exhibits near‑zero flexibility when either intrinsic self‑influence or en‑
vironmental influence dominates the dynamics. A maximum flexibility value emerges at optimal coupling strength
w, demonstrating the critical role of balanced interactions. Furthermore, increasing the temperature T generally
induces a monotonic reduction in flexibility across the parameter space. Notably, Figure 6b reveals a counterin‑
tuitive phenomenon where moderate noise levels (𝑇 ≈ 0.2) paradoxically enhance flexibility to peak values. The
phenomenon of enhanced synergistic information under low noise levels has been previously captured by other
metrics [34]. Our experiments demonstrate that this phenomenon originates from interactions at the dynamical
mechanism level. More importantly, through the decomposition of flexibility, we reveal that systems leverage low
noise to achieve greater diversity and environmental sensitivity (Exp). The benefits of this trade‑off outweigh the
loss of intrinsic order (Int) caused by noise, resulting in an optimal noise level that maximizes flexibility. In biologi‑
cal systems, noise inherent in the interactions of genes regulating circadian rhythmsmaintains oscillatory behavior

30



Digital Technologies Research and Applications | Volume 04 | Issue 03

without decay [26]. This suggests that other complex systems may benefit similarly from controlled noise levels,
enabling optimal environmental responsiveness.

Figure 5. The schematic illustrates the experimental design framework, where nodes A, B, and C constitute the core
system interacting with environmental variables 𝐸1 and 𝐸2. Edges indicate interaction relationships, with weights
𝑤𝑗,𝑖 encoded by color‑codedmathematical symbols (colored circles denote self‑loops). The continuously adjustable
parameter 𝑤 ∈ [0, 1] governs interaction intensities, whose functional role is defined through the mathematical
formulation in Equation (12).

Figure 6. The experimental result graph. In (a), it indicates the heatmap of the flexibility varying with the temper‑
ature 𝑇 and the weight ratio parameter 𝑤. (b) shows that when 𝑤 = 0.5, the changing trends of flexibility, expan‑
siveness, and introversion with respect to 𝑇. The solid line shows the ground‑truth result, which corresponds to
the line with 𝑤 = 0.5 in (a). The dashed line is the calculation result of the trained artificial neural network based
on machine learning from the generated data. The radius of the band is the standard deviation of the results of 10
repeated experiments.

To validate the framework’s capability in reconstructing and quantifying systemmechanisms under unknown
dynamics, we train a neural network (NN) with four fully‑connected layers (32 → 64 → 64 → 16 → 8) using
data generated from conditional probabilities at 𝑤 = 0.5 under uniform input distribution. The NN architecture
employs LeakyReLU activations in hidden layers and cross‑entropy loss for one‑hot encoded inputs. The alignment
between predicted (dashed) and theoretical (solid) curves in Figure 6b demonstrates successful extension of our
measurement framework to data‑driven scenarios throughmachine learning integration. We also calculate thema‑
chine learning results when the data contain varying proportions of observational noise; refer to Supplementary
Materials Appendix E for details.

4. Discussion
This framework still needs improvement. We assumed the dynamics areMarkovian, butmany real‑world prob‑

lems require a non‑Markovian framework. Future work could explicitly incorporate non‑Markovian dynamics by,
for example, modeling systemmemory or delayed feedback. Additionally, althoughwe obtained indicators of multi‑
variate information decomposition with good properties on the three‑variable systemwith two variables acting on
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one variable, in the future, the calculation problemof synergistic informationwhen the source variables reach three
or more needs to be addressed. In this paper, the calculation and experiments of the indicators are based on dis‑
crete systems. Having proposed amethod to calculate flexibility in continuous dynamical systems (Supplementary
Materials Appendix F), our framework can be applied to a broader range of problems within such systems.

We currently assume that the dynamics are known. If the dynamics are unknown but the data is accessible,
machine learning techniques can also be used to obtain the underlying dynamic mechanism first and thenmeasure
it. Themachine learning in this paper is a preliminary attempt to prove its feasibility. In the future, we can introduce
more complex neural networkmodels to learn more complex dynamic mechanisms, and even take flexibility as the
optimization goal to train artificial models with higher flexibility.

Nowadays, powerful causal inference andmachine learningmethods can infer GRNs frommulti‑omics data [35].
With these data and inference methods, we can apply flexibility to identify key structures in many future practical
applications, such as drug discovery [36,37] and artificial systemswith computational capabilities like online learning
and education [38,39].

5. Conclusions
Overall, for systems and environments that satisfy the Markov dynamics assumption, we defined on the TPM

how to measure the synergistic influence of the system and the environment on the system’s flexibility, which cap‑
tures the flexibility of the system. It is neither completely determined by the dynamics of the system itself (different
from Individual Driving Information) nor completely determined by the dynamics of the environment on the sys‑
tem (different from External Driving Information), but corresponds to the part in the dynamics of the system and
the environment as a whole where the whole is greater than the sum of the parts. In the experiments of CA, we
verified that complex cellular automata have higher flexibility. More importantly, on the Boolean network data of
GRNs selected by experts, we found that the structure of feedback loops in various real environments has higher
flexibility. This indicates that flexibility specifically points to the biological functions carried by this structure, such
as dynamic compensation, biological cycle regulation, and so on [26]. Currently, we have only compared different
Boolean network structures and have not distinguished different Boolean functions on the same structure. In the
future, flexibility can be used to predict whether new structures and new dynamic functions have the biological
functions we are interested in.

Through the decomposition of flexibility into dual components, we established expansiveness and introversion.
These respectivelymeasure the interaction variety between systemand environment, and the level of dynamic orga‑
nization in behavioral patterns. As shown in themachine learning experiments, the noise intensity in the dynamics
is inversely proportional to the magnitude of introversion. Expansiveness measures, apart from the noise factor,
quantify the extent towhich the influences on the system from the system itself and from the environment cannot be
decoupled. Combining themachine learning experiments on RBNs and the computational results on CAs, we found
that when there is noise in the dynamics, the reduction of noise increases flexibility by increasing the magnitude of
introversion. And when the noise in the dynamics remains unchanged, the coupling degree of the influences of the
system and the environment on the system is reflected by expansiveness, and at this time, the change of flexibility
is dominated by the change of expansiveness. The analysis of expansiveness indicates that in the process of obtain‑
ing the variable space from the state space through a certain partition, the known boundary between the system
and the environment is only one of several possible partitions. Synergy occurs when the original boundary is too
ambiguous, so that we need to find a new coarse‑graining of the state space.
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