Bionic Robots: Definition and Their Relevance in Biochemistry and Immunology-Scilight

Bio-Robotics

Review article

Bionic Robots: Definition and Their Relevance in Biochemistry and Immunology

Downloads

Sabbar, A. G., & Dohi, F. A. (2025). Bionic Robots: Definition and Their Relevance in Biochemistry and Immunology. Bio-Robotics, 1(1), 1–15. https://doi.org/10.54963/br.v1i1.1291

Authors

  • Ahmed Gh Sabbar

    College of health and medical techniques, Middle Technical University, Baghdad 964, Iraq
  • Fatima A Dohi

    Medical Laboratory Technology, Bab-Muadham 41019, Iraq

Received: 11April 2025; Revised: 16 May2025; Accepted: 25 May 2025; Published:3 June 2025

Bionic robots constitute a fusion of biological ideas with advanced robotics, permitting machines to mimic and combine with dwelling systems. Their relevance in biochemistry and immunology extends past mechanical engineering, influencing biomedical programs such as prosthetics, immune-modulating devices, and biohybrid structures. This record explores the definition of bionic robots, their biochemical interactions, and their immunological implications, highlighting their transformative capacity in medication and biotechnology. Bionic robots, stimulated by using biological structures, combine biomimetic standards to enhance adaptability, sensory belief, and functional efficiency. This overview explores the biochemical and immunological implications of bionic robotics, specializing in biohybrid designs, immune responses to synthetic materials, and capability packages in remedy and biotechnology.

Keywords:

Bionic Robots Biohybrid Biosensor Biomimetic Biochemistry Immunology

References

  1. Dasgupta, D.; Dutta, S. Bionic robotics: A new frontier blending biology and engineering. J. Robot. Biomimetics 2020, 7, 13–25.
  2. Ravi, S.; Nair, A.B.; Jacob, S.A. Emerging bionic technologies for real-time biochemical and immunological monitoring. Front. Bioeng. Biotechnol. 2021, 9, 621735.
  3. Katz, P.S. Evolution of central pattern generators and rhythmic behaviors. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190314.
  4. Hochberg, L.R.; Bensmaia, S.J. Neuroproteins: Current status and future prospects. Annu. Rev. Biomed. Eng. 2014, 16, 347–371.
  5. Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.
  6. Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; et al. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 2011, 24, 384010.
  7. Luo, Z.R.; Yang, H.; Tao, J.; et al. Review of Micro-bionic Robots. J. Mech. Eng. 2025, 61,178–196.
  8. Zhao, S.; Sun, D.; Zhang, J.; et al. Actuation and Biomedical Development of Micro-/Nanorobots—A Review. Mater. Today Nano 2022, 18, 100223.
  9. Schä tzlein, E.; Blaeser, A. Recent Trends in Bioartificial Muscle Engineering and Their Applications in Cultured Meat, Bio robotic Systems, and Biohybrid Implants. Commun. Biol. 2022, 5, 737.
  10. Xu, K.; Yuan, G.; Zheng, J.; et al. Bioinspired Microrobots and Their Biomedical Applications. Nanoscale 2024, 16, 20434–20450.
  11. Zhang, C.; Yang, J.; Wang, W.; et al. Bio-Syncretic Robots Composed of Biological and Electromechanical Systems. Natl. Sci. Rev. 2023, 10.
  12. Li, S.; Jiang, S.; Liu, L.; Reducing the foreign body reaction: A biomaterial science perspective. Adv. Healthcare Mater. 2017, 6, 1601253.
  13. Zhang, Q.; Zeng, Y.; Zhao, Y.; et al. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioeng. 2024, 11, 311.
  14. Li, J.; Dekanovsky, L.; Khezri, B.; et al. Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery. Cyborg Bionic Syst. 2022, 2022, 9824057.
  15. Smith, J.A.; Lee, K.H. Biosensing mechanisms in bionic devices: A biochemical perspective. Sens. Actuators B 2019, 301, 127042.
  16. Chen, C.; Sun, T.; Wang, J. Intelligent micro/nanorobots for active delivery in biomedical applications: Progress and perspectives. Adv. Funct. Mater. 2020, 30, 1908943.
  17. Dulundu, A. The Future of Robotics: Integrating Biological Components in Biohybrid Robotics for Enhanced Functionality and Adaptability. J. Next Front. Life Sci. AI 2024, 8.
  18. Victoria, S.; Trine, L.; Hystad, P.; et al. Indoor and Personal PM2.5 Samples Differ in Chemical Composition and Alter Zebrafish Behavior Based on Primary Fuel Source. Environ. Sci. Technol. 2023, 57, 21260–21271.
  19. Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953.
  20. Matsuda, T.; Tanishima, T. Biochemical signaling in biohybrid systems: Implications for robotic adaptability. Front. Robot. AI 2019, 6, 45.
  21. Zhao, X.; Yang, H.; Li, Q. Enzymatic interfacial processes in biohybrid robotic materials. ACS Appl. Mater. Interfaces 2021, 13, 16523–16534.
  22. Tracking Chinese Research. Scientists Turn Immune Cells into Light-Controlled Robots. Available online: https://scienceblog.com/sciencechina/2025/05/27/scientists-turn-immune-cells-into-light-controlled-robots/ (accessed on 7 May 2025).
  23. Mariani, E.; Lisignoli, G.; Borzı̀, R.M.; et al. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, 20, 636.
  24. Batool, F.; Odž zçelik, H.; Stutz, C.; et al. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J. Tissue Eng. 2021, 12, 1–19.
  25. Chen, Y.; Sunai, W.Y.; Tang, Y.Z.; et al. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Bioeng. Biotechnol. 2022, 10, 820940.
  26. Mohmad, P. Advancements in Biomedical Robotics: The Creation and Application of Synthetic Tissue. Ind. Trends 2024.
  27. Yadav, M.; Kumar, A.; Verma, G.C. Artificial Tissues and Organs: Revolutionizing and Pioneering the Future of Medicine and Healthcare. In Additive Manufacturing for Biomedical Applications; Dixit, A., Kumar, A., Pathak, D.K., Eds.; Springer: Singapore, 2024; Volume 7, pp. 105–160.
  28. Martinez, V.; Foster, E.; Langer, R. Immunoengineering for nextgeneration bionics and biohybrid devices.Nat. Rev. Mater. 2022, 7, 380–395.
  29. Zhao, G.Q.; Wang, D.; Chen, Q.Q.; et al. Pupils’ Thinking Skills Development across Grade 4–6: An Investigation of 2096 Pupils in Mainland China Based on APTS. Creative Educ. 2017, 8.
  30. Menciassi, A.; Takeuchi, S.; Kamm, R.D. Biohybrid Systems: Borrowing from Nature to Make Better Machines. APL Bioeng. 2020, 4, 020401.
  31. Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969.
  32. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 2012, 122, 787–795.
  33. Yamamoto, T.N.; Lee, P.-H.; Vodnala, S.K.; et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Investig. 2019, 129, 1551–1565.
  34. Suzuki, Y.; Uno, S.; Raymond, R.; et al. Amplitude estimation without phase estimation. Quantum Inf. Process. 2020, 19, 75.
  35. Yang, H.; Hu, E.; Tiersch, T.; et al. Temporal and Concentration Effects of Methanol on Cryopreservation of Zebrafish (Danio rerio) Sperm. Zebrafish 2020, 17, 233–242.
  36. Tang, T.; Shindell, D.; Zhang, Y.; et al. Distinct surface response to black carbon aerosols. Atmos. Chem. Phys. 2021, 21, 13797–13809.
  37. Aggarwal, S. Biotechnology Applications In Medicine. Int. J. Soc. Sci. Econ. Res. 2021, 6.
  38. Applications of Biotechnology in Medicine. Available online: https://vajiramandravi.com/upsc-exam/application-of-biotechnology-in-medicine/ (accessed on 7 May 2025).
  39. Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; et al. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 2020, 382, 1732–1738.
  40. Topol, E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
  41. Lin, Z.; Jiang, T.; Shang, J. The Emerging Technology of Biohybrid Micro-Robots: A Review. Bio-des. Manuf. 2022, 5, 107–132.
  42. Chen, Y.; Zhao, H.; Wang, X. Molecular engineering in bionic robotics: Harnessing biochemical processes for adaptive functions. Adv. Funct. Mater. 2022, 32, 2109876.
  43. Wang, H.J.; Fu, H.J.; Chen, P. On the Practice of Cultivating NonEnglish Major’s Intercultural Awareness through Oscar Best Pictures. Creative Educ. 2021, 12.
  44. Cianchetti, M.; Laschi, C.; Menciassi, A.; et al. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.
  45. Webster-Wood, V.A.; Guix, M.; Xu, N.W.; et al. Biohybrid Robots: Recent Progress, Challenges, and Perspectives. Bioinspir. Biomim. 2023, 18, 015001.
  46. Shin, M.; Lim, J.; An, J.; et al. Nanomaterial-Based Biohybrid Hydrogel in Bioelectronics. Nano Convergence 2023, 10, 8.
  47. Chen, W.Y.; Salvatierra, R.V.; Li, J.T.; et al. Brushed Metals for Rechargeable Metal Batteries. J. Adv. Mat. 2022, 34, e2202668.
  48. Kim, H.C.; Kaplan, C.M.; Islam, S.; et al. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS ONE 2023, 18, e0288544.
  49. Das, T.; Sultana, S. Multifaceted applications of micro/nanorobots in pharmaceutical drug delivery systems: a comprehensive review. Future J. Pharm. Sci. 2024, 10, 2.
  50. Nielsen, J.B.; Zawieska, K.; Mazzolini, A. Ethical issues and policy landscape in biohybrid and cyborg technologies. Bioethics 2023, 37, 157–170.
  51. Liu, L.; Wang, X.; Guo, R. Recent trends in biomaterial design for biohybrid robotics. Adv. Mater. 2021, 33, 2008185.
  52. Martinez, A.B.; Soares, A.S.; Cruz-Santos, B.A. Letramentos de students cegos do Brasil e de Portugal: uma análise sobre os usos da leitura em diferentes espaços sociais e educacionais. Benjamin Constant, Rio de Janeiro 2022, 28, e286405. (in Portuguese)
  53. Kim, D.; Chin, M.; Yu, H.; et al. A multi-model and multi-remote sensing observation analysis. J. Geophys. Res. Atmos. 2019, 124, 13534–13559.
  54. Kotova, L.N.; Kotov, A.B.; Glebovitskii, V.A.; et al. Source Rocks and Provenances of the Ladoga Group Siliciclastic Metasediments (Svecofennian Foldbelt, Baltic Shield): Results of Geochemical and Sm–Nd Isotopic Study. Stratigr. Geol. Correl. 2009, 17, 1–19.
  55. Huh, D.; Matthews, B.D.; Mammoto, A. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668.
  56. Xie, Y.; Clarke, B.P.; Kim, Y.J.; et al. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 2021, 10, e65699.
  57. Wang, L.; Wang, J. Microrobots for precise cancer therapy: From concept to clinical translation. Mater. Today 2021, 46, 256–274.
  58. Dolzani, P.; Assirelli, E.; Pulsatelli, L.; et al. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS ONE 2019, 14, e0222947.
  59. Roy, A.H.; Ghosh, S.; Gupta, B. Robotics in Medical Domain: The Future of Surgery, Healthcare and Imaging. Wireless Pers. Commun. 2023, 132, 2885–2903.
  60. Daudi, J. An Overview of Application of Artificial Immune System in Swarm Robotic Systems. Autom. Control Intell. Syst. 2015, 3, 11–18.
  61. Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future. Proc. IEEE 2021, 109, 1152– 1165.
  62. Eslami, M.; Dowlat, B.F.; Yaghmayee, S.; et al. Next-Generation Vaccine Platforms: Integrating Synthetic Biology, Nanotechnology, and Systems Immunology for Improved Immunogenicity. Vaccines 2025, 13, 588.
  63. Antosiewicz, J.M.; Kane, P.M. Intracellular Molecular Processes Affected by pH. Front. Mol. Biosci. 2022, 9, 891533.
  64. Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; et al. Potential Climate Change Impacts on Water Resources in Egypt. Water 2021, 13, 1715.
  65. Andrews, S.S.; Kochen, M.; Smith, L.; et al. Signal integration and integral feedback control with biochemical reaction networks. Available online: https://www.biorxiv.org/content/10.1101/2024.04.26.591337v1 (accessed on 26 April 2024).
  66. Bao, K.; Yoon, J.S.; Ahn, S.; et al. A robotic system for automated chemical synthesis of therapeutic agents. Mater. Adv. 2024, 5, 5290–5297.
  67. Vangala, S.; Saxena, U.; Satish Chandran, C. Building Human In Vitro 3D Models to Replace Animal Studies During Drug Discovery Research: Scientific, Ethical and Regulatory Considerations. In Microϔluidics and Multi Organs on Chip; Mohanan, P.V., Ed.; Springer: Singapore, 2022; Volume 29, pp. 695–717.
  68. Ineichen, B.V.; Furrer, E.; Grü ninger, S.L.; et al. Analysis of animal-to-human translation shows that only 5% of animal-tested therapeutic interventions obtain regulatory approval for human applications. PLoS Biol. 2024, 22, e3002667.
  69. Abrhaley, A.; Giday, M.; Hailu, A. Challenges and opportunities of translating animal research into human trials in Ethiopia. BMC Med. Res. Methodol. 2024, 24, 211.